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Nonlinear blind signal separation is an important but rather difficult problem. Any general nonlinear
independent component analysis algorithm for such a problem should specify which solution it tries to
find. Several recent neural networks for separating the post nonlinear blind mixtures are limited to the
diagonal nonlinearity, where there is no cross-channel nonlinearity. In this paper, a new semi-parametric
hybrid neural network is proposed to separate the post nonlinearly mixed blind signals where cross-
channel disturbance is included. This hybrid network consists of two cascading modules, which are a
neural nonlinear module for approximating the post nonlinearity and a linear module for separating
the predicted linear blind mixtures. The nonlinear module is a semi-parametric expansion made up
of two sub-networks, one of which is a linear model and the other of which is a three-layer perceptron.
These two sub-networks together produce a “weak” nonlinear operator and can approach relatively strong
nonlinearity by tuning parameters. A batch learning algorithm based on the entropy maximization and
the gradient descent method is deduced. This model is successfully applied to a blind signal separation
problem with two sources. Our simulation results indicate that this hybrid model can effectively approach
the cross-channel post nonlinearity and achieve a good visual quality as well as a high signal-to-noise ratio
in some cases.

1. Introduction

Recently, Blind Signal Separation (BSS) has drawn

great attention in separating the statistically inde-

pendent non-Gaussian sources.1 Independent Com-

ponent Analysis (ICA) is a popular method for BSS

when these sources are mixed linearly.1 For the

following equation:

s = Ax (1)

where s = [s1, . . . , sn]T is the n-dimension observed

signal, x = [x1, . . . , xn]T stands for n independent

sources {x1, . . . , xn} which are mixed with an un-

known n by n linear matrix A, the linear BSS prob-

lem is to estimate x and a linear de-mixing matrix

W = A−1 from s, as shown in the following equation:

x = Ws (2)

The solution is unique up to some trivial indetermi-

nacies, including permutation and multiplication of

si by constants.

Because the signals nonlinearly transformed from

independent sources are still independent with each
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other, in principle, it is impossible to accurately

restore the original independent sources or their

whitened signals merely from the observed nonlin-

early mixed signals. In other words, the nonlinear

ICA does not have a unique solution.2 Despite this

limitation, recently there are some discussions on

how to use neural networks to separate post non-

linear blind mixtures.3–9 In the general form of post

nonlinear ICA, x and W are estimated from a mid-

dle signal z, which is nonlinearly transformed from s

with nonlinear operator F , as shown in the following

equation:

x = Wz = WF (s) (3)

In Taleb and Jutten’s model, F is con-

strained to a nonlinear diagonal operator F =

diag(f1, . . . , fn), which does not include the cross-

channel disturbance.8 Its paradigm can be depicted

as in Fig. 1. Yang, Amari, and Cichocki9 pro-

posed two information back-propagation training al-

gorithms for this model. Two major problems of

such a model are (1) the diagonal nonlinearity is

not widely accepted because usually there is cross-

channel nonlinear disturbance in signal transmission,

and (2) the back-propagation-like algorithm often

converges slowly and unsteadily due to the gradient

descent strategy.

In this paper, we discuss how to “learn” an ac-

ceptable solution for post nonlinear ICA problems

with cross-channel disturbance. Because there are

an infinite number of possible solutions for such a

problem, we propose a weak nonlinearity assump-

tion to specify what the model should find. Our

idea is implemented as a hybrid neural network that

combines a nonlinearity approximation module and

a linear ICA module. The nonlinearity approxima-

Fig. 1. Blind de-mixer for post diagonal nonlinearity.

tion module is designed as a semi-parametric model,

which is a weak nonlinear expansion from a linear

neural network. The batch-learning algorithm based

on the entropy maximization is derived. Our model

is applied to separating the nonlinear blind mixtures,

where special types of nonlinearity are designed. The

paper is organized as follows. In Sec. 2, we present

our hybrid model for nonlinear blind signal separa-

tion. The learning algorithm based on the entropy

maximization for such a model is derived in Sec. 3.

In Sec. 4, we report experimental results and discuss

the performance of our model. Finally, concluding

remarks are drawn in Sec. 5.

2. Hybrid Neural Network Model

Different from the blind de-mixer shown in Fig. 1,

which only approximates the diagonal nonlinear op-

erator, a neural blind de-mixer consisting of two

modules as shown in Fig. 2 is proposed. The first

module is a nonlinear module to approximate the

post nonlinearity. The second module is a linear ICA

module to estimate the final restored signals.

Fig. 2. Blind de-mixer with two sub-networks for post
cross-channel nonlinearity.

2.1. Nonlinear module

For the nonlinear module, the post nonlinearity

operator F is assumed as a “weak” operator that

approaches relatively strong nonlinearity by param-

eter tuning. This assumption can be written in the

following semi-parametric form:

F (s) = K(s) + U(s) + ε (4)

where K(s) is the function of a known parametric

model, U(s) is an unknown smooth function (non-

parametric model), and ε is an independent random
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error ε ∼ N(0, τ2), where τ is a positive scale pa-

rameter. Our assumption requires that the influence

of U is trivial at the beginning (thus K plays the

main role) and becomes stronger gradually until a

specific ending condition is satisfied. With this as-

sumption, F can represent a large variety of nonlin-

earities, including the diagonal nonlinearity, n by n

nonlinear matrix operator, and other more complex

nonlinearities.

In Fig. 2, we propose a simplified version of the

semi-parametric model mentioned above, where the

parametric model K is chosen as a linear channel

model and the non-parametric model U is approxi-

mated by a three-layer feedforward neural network.

This paradigm leads to two parallel sub-networks,

the first of which has the following output:

z1 = K(s) = c ◦ s (5)

where c is a coefficient vector and ◦ stands for the

Hadamard product. This network actually can be re-

garded as a separated part from the common linear

ICA model because the latter has the indetermina-

tions of permutation and amplitude.

The second sub-network is a nonlinear cross-

channel model, which has the following output:

z2 = U(s) = Ω[v × o− v(b)]

= Ω[v × Φ(u× s− u(b))− v(b)] (6)

where u, v, u(b), v(b) are the weight matrices and

bias vectors, × is the matrix multiplication, Ω and

Φ are the nonlinear activation functions of the out-

put layer and hidden layer, respectively. The sec-

ond sub-network is a three-layer perceptron, which

is a feedforward neural network widely used in ap-

proximating any nonlinearity when there are enough

hidden neurons in the layer o. This sub-network is

a typical non-parametric model because it does not

require any prior knowledge about the cross-channel

nonlinearity.

The total output of the nonlinear neural module

is given by

z = z1 + z2 = F (s) (7)

For the model expressed in Eq. (7), when the

nonlinear operator F is continuous, it is possible to

approximate the strong nonlinearity from the “weak”

operator. Therefore, a strategy to “learn” (con-

struct) a proper solution is adopted. The method

employed in our algorithm is to initialize the weights

of the second sub-network to be trivial values and

enlarge these weights in the learning of the whole

network. Notice that the output of the nonlinear

module, z, is the input to the following linear mod-

ule, as expressed in Eq. (3).

2.2. Linear module

In Fig. 2, a linear ICA module, which is described

by Eq. (3), is attached to the nonlinear module. In

principle, any linear ICA paradigms can be applied

to this module, however, the fast ICA algorithm10 is

adopted to produce a fast estimation. These two cas-

caded modules adopt different algorithms and there-

fore, form a hybrid neural network.

3. Learning Algorithm

Various algorithms based on information back-

propagation can be deduced for the hybrid model.

Because the function of the model is to con-

struct mutual independent sources (components) of

x, the information constraints for linear ICA can

be used. These constraints include information

maximization,11 entropy maximization,12,13 maxi-

mum likelihood estimation,14,15 higher-order mo-

ment and cumulants,16 nonlinear Principle Com-

ponent Analysis (PCA),17 etc. For simplicity, we

illustrate here only one set of equations deduced from

the entropy maximization, which is among the most

important approaches of ICA.

Entropy can be “maximized” merely when the

variables are bounded. Notice that the signal x is

not bounded, thus we maximize the entropy of y,

whose ith component is defined as

yi = σ(xi) =
1

[1 + exp(−xi)]
(8)

The entropy of y can be given by

H(y) = H(x) +E[ln |det(Jσ)|] (9)

where det(Jσ) is the determinant of the Jacobian of

the mapping function from x to y, and E[·] is the

expectation.

Similarly we have

H(x) = H(z) +E[ln |detW |] (10)

H(z) = H(s) +E[ln |det(JG)|] (11)
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where W and JG are Jacobians of the mapping func-

tions from z to x and from s to z, respectively.

When Ω is chosen as pure linearity and Φ is

chosen as the hyperbolic tangent sigmoid transfer

function, the above relationships sum up to be:

H(y) = H(s) +E

[
ln

∣∣∣∣∣
n∏
i=1

(1− xi)xi

∣∣∣∣∣
]

+ E[ln |det W |] +E[ln |det(JG)|]
(12)

where

JG = diag(c)+
1

2
{v× [(Γm:1−o◦o)×Γ1:m◦u} (13)

ΓP :Q is a P -row-Q-column matrix whose components

are all 1, and m is the number of hidden neurons in

the neural network. The first term [a diagonal matrix

whose n elements are the corresponding elements of

vector c in Eq. (5)] of Eq. (13) is the Jacobian from s

to z1 (for the first sub-network of the nonlinear mod-

ule). The second term (a n by n matrix) of Eq. (13)

is the Jacobian from s to z2 (for the second sub-

network of the nonlinear module). Due to Eq. (7),

the Jacobian from s to z is the sum of these two

terms.

Since that the task of the nonlinear module is to

generate a coarse estimation of the linear mixture

from the original nonlinear blind mixture, it is rea-

sonable to force the coarse estimation z to be stable

when the linear ICA model works. This requirement

is combined with Eq. (12) to produce the following

cost function for z:

C = ‖z(k)− z(k − 1)‖ − λH(y) (14)

where k is the index of a loop, λ is a positive factor,

and ‖·‖ is the 2-norm. Minimization of the first term

of Eq. (14) will force the nonlinear module to produce

slowly varying output, while maximization (mini-

mization the negative) of the second term is a re-

quirement to produce independent components. The

maximization of the second term had been used simi-

larly in the information back-propagation approach.9

The cost function in Eq. (14) is minimized to

train the nonlinear module. Because the repeating

adjustment for every time step is complicated and

a significant part of such adjustment may not re-

sult in an immediate improvement of the estimation

of z (this is a characteristic of the gradient descent

algorithm!), we propose a batch learning algorithm

to find the parameters of the nonlinear module. In

this batch learning algorithm, all “micro” adjust-

ments over a full loop sum up to act as a “macro”

variation, which is used to update the parameters

of the nonlinear module. Under the constraint of

Eq. (14), the total gradient of C to z is approximated

as (see Appendix A for the derivation):

∇z ≈ 2{E[z(k)]−E[z(k − 1)]}

− λ
{
WT × Γn:1 − 2E[x]

E[x]−E[x ◦ x]

}
(15)

Back-propagation-like learning algorithm of the

nonlinear module can be obtained straightforwardly

when ∇z is available. In the batch learning, the fol-

lowing approximation equations are used to adjust

parameters of the nonlinear module (see Appendix B

for derivation):

∆c = −µ∇z ◦E[s] (16)

∆v = −µ∇z ×E[o]T (17)

∆v(b) = µ∇z (18)

∆u = −µ
2
{vT ×∇z ◦ (Γm:1 −E[o ◦ o])} ×E[s]T

(19)

∆u(b) =
µ

2
{vT ×∇z ◦ (Γm:1 −E[o ◦ o])} (20)

where µ is a small learning rate and a vanishing func-

tion of learning loop k (time).

Although there are two terms in Eq. (14), in our

algorithm the ending condition is only dependent on

the smoothness of the middle signal z. Two indexes

are defined for this purpose:

e1 = ‖z(k)− z(k − 1)‖ (21)

e2 =
‖z(k)− z(k − 1)‖

‖z(k)‖ (22)

The first index, e1, is actually the first term in

Eq. (14). When this index is less than a given thresh-

old, the learning of the nonlinear module should stop.

Otherwise a new estimation of z is required. In the

case that z is very close to zero, the second index,

e2, is used.

The complete batch learning algorithm is

presented in Table 1. Notice that the linear ICA

module and the nonlinear module are updated

asynchronously.
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Table 1. The batch learning algorithm of the hybrid model.

Step 1: k = 0. Initialize z to be the sum of s and small perturbation, that is, c(k) = Γn:1 and u,

v, u(b), v(b) are randomly initialized to produce small z2. Calculate the expectation of s.

Step 2: k = k + 1. Call a linear ICA algorithm to de-mix z and produce independent sources x.

Step 3: Calculate the expectation of x.

Step 4: Calculate ∇z according to Eq. (15).

Step 5: Calculate the expectations of z, o.

Step 6: Adjust the parameters c, u, v, u(b), v(b) according to Eqs. (16)–(20).

Step 7: Calculate z with the new parameters.

Step 8: Calculate one of the indexes in Eqs. (21) and (22), If the index is less than a preset small
positive threshold, then stop the processing and output results. Otherwise go to Step 2.

4. Experimental Results and Discussion

For simplicity and convenience in comparing with

the existing ICA and nonlinear ICA algorithms, we

choose four types of nonlinearity for evaluation. The

pixel intensity range of the original images (ground

truth signals) is transformed to [−1, 1]. They are

linearly mixed with a random mixing matrix A to

generate the middle signal h = [h1, h2]T , which

are then nonlinearly transformed with the following

relationships to produce the “observed” signal s:{
s1 = tanh(h1) + ln(1 + |h1 + h2|)

s2 = sinh(h2)−
√
|h1 ◦ h2|

(23)

The four nonlinear functions in Eq. (23) lead to

obvious cross-channel nonlinear disturbances. These

nonlinear disturbances can be visualized in Fig. 3,

where s1 and s2 are complex curves. [The curves in

Fig. 3. Cross-channel nonlinear relationships of Eq. (23).
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Figs. 3(c) and (d) are obtained when h1 and h2 have

relationship in Figs. 3(a) and (b).]

The task of nonlinear ICA is to restore the ground

truth signals from s. Two main experiments are

designed to investigate the performance of our semi-

parametric hybrid model.

4.1. Experiment 1: Nonlinear ICA of

image-noise mixtures

For the convenience of visualization, we used 128×

128 “Lenna” image as one source and the impulsive

noise as another source (see Fig. 4). They are used as

row-by-row 1-dimensonal signals in our experiments.

A randomly generated mixing matrix, A, is used

to produce the linear mixed middle signal h. Because

this experiment is repeated for a number of times, the

real value of the mixing matrix is unimportant. For

the following reported results, A is
[

0.3077 0.7911

0.4893 0.8805

]
.

Figures 5 and 6 show h and s, respectively. Then s

is scaled to the range of [−1, 1].

(a) Lenna (b) Impulsive noise

Fig. 4. The ground truth signals used in experiment 1.

(a) Channel 1 (b) Channel 2

Fig. 5. The linear mixed signal h in experiment 1.
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(a) Channel 1 (b) Channel 2

Fig. 6. The nonlinear transformed signal s in experiment 1.

(a) Channel 1 (b) Channel 2

Fig. 7. The nonlinearly restored signal x from the hybrid model using both the first sub-network and the second
sub-network.

s is used as the input of the hybrid network

in Fig. 2. In this experiment, the learning rate of

the nonlinear module is µ(k) = 0.5 × (0.9)k, λ in

Eq. (14) is 0.5, and the number of hidden neurons

in the nonlinear module, m, is 10. The fast ICA al-

gorithm proposed by Hyvärinen and Oja10 is used

for the linear module. The ending condition is set as

e2 < 0.1. A typical nonlinearly-separated (restored)

signal from the hybrid model, x, is shown in Fig. 7.

For a comparison, the restored signal merely using

the first sub-network, the restored signal merely us-

ing the second sub-network, and the restored sig-

nal using a simple linear ICA model (the fast ICA

algorithm is used) are given in Figs. 8–10, sepa-

rately. Also for a comparison, the linear ICA results

(using the fast ICA algorithm) on the linear mixture

in Fig. 5 are shown in Fig. 11. We have the following

six observations:
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(a) Channel 1 (b) Channel 2

Fig. 8. The restored signal x from the hybrid model using the first sub-network only.

(a) Channel 1 (b) Channel 2

Fig. 9. The restored signal x from the hybrid model (using the second sub-network only).

(1) Nonlinear BSS problems exist widely. The

images in Fig. 5 do not have visually significant

difference from the images in Fig. 6, however, the

former can be successfully (and easily) separated by

a linear ICA algorithm (Fig. 11), but the latter can

not be separated (just see the poor results in Fig. 10).

Because of the many different possibilities for signal

degrading in signal transmission, it is necessary to

consider BSS as a nonlinear problem, but not a lin-

ear problem. This fact serves as the necessity of our

nonlinear ICA model.

(2) The hybrid ICA model achieves better perfor-

mance than the linear ICA model if observed signals

are nonlinearly mixed. In Fig. 7, one channel of sig-

nal from the hybrid model is relatively clear image of

Lenna while the other channel signal is mainly strong

noise with the light shadow of Lenna. However, in

Fig. 10, we cannot find any acceptable signals di-

rectly from a linear ICA model. Because the restored

signals in Figs. 7 and 10 are not scaled properly, the

signal-to-noise ratio (SNR) cannot be calculated im-

mediately. However, the visual performance of the
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(a) Channel 1 (b) Channel 2

Fig. 10. The restored signal x from a linear ICA model (using the fast ICA algorithm).

(a) Channel 1 (b) Channel 2

Fig. 11. The linearly separated signal from the linearly mixed signal h (by fast ICA algorithm).

hybrid model is undoubtedly better than that of the

linear ICA model.

(3) The semi-parametric model achieves better

performance than the parametric model and the non-

parametric model. In Fig. 8, the linear parametric

model with only the first sub-network fails to pro-

duce any visually acceptable signals. In Fig. 9, al-

though both channels of output signal are visually

fine, they are unacceptable logically because if the

noisy channel of signal is not separated, the output

signal is not useful. Therefore, the semi-parametric

model is a necessary combination of the parametric

model and the non-parametric model.

(4) The linear parametric model equals the linear

ICA model. Apparently, Figs. 8 and 10 are identical.

This situation is in accordance with our analysis in

Sec. 2. Notice that when some forms of the post non-

linearity are known, parametric models other than
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Table 2. An example of the batch learning.

Loop e2 ||z|| x1 x2

1 1. 000000 77. 0376

2 1. 045722 544. 8335

3 0. 393765 888. 1439

4 0. 199703 740. 3602

5 0. 436505 516. 2926

6 0. 511347 1040. 8

7 0. 158925 1234. 9

8 0. 169648 1480. 2

9 0. 055046 1408. 2
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the linear channel model can be designed, in which

cases the parametric model will not be identical to

the linear ICA model.

(5) The original signal cannot be restored in this

example. This point has been ignored in our previ-

ous work,18 however, because the functional relation-

ship between s1 and h1 is not reversible [Fig. 3 and

Eq. (23)], there is actually no possibility to restore

the original source signal in this example. When F

is reversible, although there is no means to tell which

solution is the original signal, the solution set does

contain the original source signal. Thus an impor-

tant aspect of our nonlinear ICA algorithm is that it

can offer an acceptable solution even when the true

solution does not exist.

(6) The converging speed of the hybrid model

is quite fast. Typically, the batch algorithm in

Table 1 will run about ten loops to meet the

preset ending condition. That is, the nonlinear

semi-parametric module is usually updated about

ten times and converges. Because the fast ICA

algorithm used in the linear ICA module is far

(10–100 times) faster than the common gradient

learning algorithms,10 the whole batch learning pro-

cedure is faster than existing information back-

propagation models.8,9

In addition to the above six observations, we have

also examined the details of the batch learning. With

a different mixing weight and different initial weights

of the nonlinear module, the batch learning example

in Table 2 finishes in nine steps. The index e2 is

shown in the second column of Table 2, where we see

the convergence is fast, although not very stable. We

also find the estimated signal, z, turns larger in the

learning because its norm (shown in the third column

in Table 2) turns larger. This indicates the effect of

the second nonlinear sub-network is enlarged when

the learning proceeds. The enlarged effect is mainly

due to the enlarged weights of the nonlinear sub-

network in the semi-parametric module. The fourth

and fifth columns are the two channels restored sig-

nals. Notice that at loop 8 and loop 9, the restored

signal is quite satisfying. (In fact such results are

even visually better than that shown in Fig. 7. Note

that the result of loop 9 has good visual quality when

it is inverted. This type of intensity inversion is per-

mitted in ICA.)

Besides the visual quality of the restored signal, is

it possible to compute a quantitative index, say, the

SNR, to give a convincing comparison on the image

quality? The difficulty is due to that the absolute

intensity difference between the ground truth signal

and the restored signal is often large, even they have

similar visual (subjective) quality. In our simulation,

we use a binary image as one ground truth source

and the impulsive noise as another ground truth

source. Because the binary signal has simple inten-

sity distribution, i.e., 1 for the foreground and −1

for the background, the subjective quality will agree

with the measurable SNR in this case. The SNR is

defined as:

SNR =
‖g‖
‖g − ĝ‖ (24)

where g is the original signal and ĝ is the estimation

(or reconstruction) to g. The experimental results

indicate an apparent improvement of SNR. For ex-

ample, for the binary examplary image used in Peng

and Chi,18 we find the SNR of the hybrid model is

3.7941, which is much higher than the SNR of the

linear model, which is only 0.0715. The result is con-

sistent with the subjective quality reported by Peng

and Chi.18

It should be pointed out again that generally the

SNR is not a credible index for the nonlinear BSS

problem, except in some special cases like binary

sources. For this reason we consider following ex-

periment 2 to investigate the ability of the hybrid

model in nonlinear function approximation.

4.2. Experiment 2: Nonlinear function

approximation

In experiment 1, because the functional relationship

between h and s (denoted as G) is not reversible,

the mapping from s to h is always different from the

mapping from s to z. Actually it is impossible to

find a one-to-one mapping from s to h. We there-

fore cannot examine whether the semi-parametric

model can find the underlying nonlinear relation-

ship between the observed signal and the indepen-

dent ground truth sources (in the case they do not

exist) or not, except the visual judgement on the

restored signal. However, when the function G is

reversible, the hybrid model should have the ability

to find another nonlinear function F to approximate

G. Of course the approximation is subject to some

simple indeterminacies, such as the permutation,
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Fig. 12. Cross-channel nonlinear relationships of Eq. (25).

(a) Channel 1 (b) Channel 2

Fig. 13. Nonlinearly mixed signal s with Eq. (25).

amplitude, etc. But the basic shapes of F and G

should be similar with each other.

Consider the cross-channel nonlinearity function

G in Eq. (25). When h1 and h2 take the point series

in Figs. 3(a) and (b), the nonlinearly transformed

signals s1 and s2 have the shapes in Figs. 12(a) and

(b), respectively. The first channel has a quick de-

grading. The second channel has a slow degrading

when h is negative and a fast magnifying when h is

positive.{
s1 = 2{ln[exp(4 − h1 − h2) + 1000]− 6.8}

s2 = sgn(h1) ◦ [
√
|h1 ◦ h2| − sinh(−h2)] ◦ sinh(h2)

(25)

With the same ground truth images “Lenna” and

implusive noise and the same parameters in experi-

ment 1, the nonlinear mixed signal s is produced and

shown in Fig. 13. All the sample points are plotted

in Fig. 14 to visualize the cross-channel nonlinearity.

Figures 12 and 14 are similar, however, the hybrid

model is fed with s and tries to learn the functional

relationship shown in Fig. 14.

The results shown in Figs. 15 and 16 were ob-

tained after the hybrid model converged after 7

loops. Figure 15 shows the results computed from

the semi-parametric neural network. We see that

the basic shape of G in Fig. 14 is well-reproduced in

Figs. 15(a)–(d), where a possible sign change, shift
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Fig. 14. Functional relationships between s and h.

Fig. 15. Functional relationships between s and z.
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(a) Channel 1 (b) Channel 2

Fig. 16. The restored signal x from the hybrid model.

and amplitude scaling are permitted. Particularly,

the slow and fast varying areas in Figs. 14(a) and

(c), the decreasing trend in Figs. 14(a) and (d), and

the increasing trend in Figs. 14(b) and (c), are re-

produced in Figs. 15(a) and (c), Figs. 15(a) and (d),

and Figs. 15(b) and (c), separately.

Figure 16 shows the restored signal x. Similar

to experiment 1, the hybrid model successfully con-

struct an acceptable solution, where the main part

of the first channel [Fig. 16(a)] is noise and the sec-

ond channel [Fig. 16(b)] contains lightly degraded

“Lenna” image. The restored signal is not as good

as Fig. 7, perhaps because of the very poor observed

signal in Fig. 13.

5. Conclusion

Semi-parametric models are arousing wider notice.

In this paper, we propose a new semi- parametric

model for nonlinear ICA. Because the cross-channel

post nonlinear blind mixtures can lead to an infinite

number of reasonable solutions, it is worth propos-

ing the hybrid model for fast finding an acceptable

compromise between the mutual independence of the

output signals and the unknown post nonlinearity. It

is also possible to present some assumptions on the

post nonlinearity in order to achieve better results.

In this paper, our semi-parametric hybrid model at-

tempts to construct acceptable solutions of nonlinear

BSS problems. This model can approach relatively

strong nonlinearity from a linear model. We present

the algorithm based on the entropy maximization

and simplify it using a batch learning paradigm. Our

simulation results confirm that this hybrid model can

effectively produce a visual satisfying solution and a

good approximation to the underlying nonlinearity.

In binary cases, this model also produces the restored

signal of a higher SNR than other models.
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Appendix A. Derivation of Eq. (15)

Denote the gradient of C to z as ∇z , from Eq. (14)

we have,

∇z =
d‖z(k)− z(k − 1)‖

dz
− λdH(y)

dz
(A-1)

Substitute Eq. (12) into Eq. (A-1), there is,
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∇z =
d‖z(k)− z(k − 1)‖

dz
− λ d

dz
E

[
ln

∣∣∣∣∣
n∏
i=1

(1− xi)xi

∣∣∣∣∣
]

= 2[z(k)− z(k − 1)]− λ d
dz
E

[
ln

∣∣∣∣∣
n∏
i=1

(1− xi)xi

∣∣∣∣∣
]

(A-2)

We can impose the expectation operator on both

terms in Eq. (A-2) and obtain the following approx-

imation in Eq. (A-3), which is Eq. (15):

∇z ≈ 2{E[z(k)]−K[z(k − 1)]}

− λ
{
WT × Γn:1 − 2E[x]

E[x] −E[x ◦ x]

}
(A-3)

Appendix B. Derivation of Eqs. (16–20)

From Appendix A, the gradient of C to z has been

obtained as ∇z. The error back-propagation method

is used to obtain the adjustment of nonlinear module

parameters:

∆c = −µ∇z ◦ s (B-1)

∆v = −µ∇z × oT (B-2)

∆v(b) = µ∇z (B-3)

∆u = −µ
2
{vT ×∇z ◦ (Γm:1 − o ◦ o)} × sT

(B-4)

∆u(b) =
µ

2
{vT ×∇z ◦ (Γm:1 −E[o ◦ o])}

(B-5)

In the batch algorithm, we impose the expecta-

tion operator on each of the above equations, and

produce the approximation formulas in Eqs. (16–20)

easily.
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